Math 246C Lecture 5 Notes

Daniel Raban

April 10, 2019

1 Existence of Lifts, Germs, and Analytic Continuation

1.1 Existence of lifts

Theorem 1.1 (existence of lifts). Let X, Y be Hausdorff spaces, and let $p : Y \to X$ be a covering map. Let Z be a Riemann surface which is simply connected, and let $f : Z \to X$ be continuous. For any $z_0 \in Z$ and $y_0 \in Y$ such that $f(z_0) = p(y_0)$, there is a unique lift $\tilde{f} : Z \to Y$ such that $\tilde{f}(z_0) = y_0$.

Proof. Let $z \in Z$, and let γ be a path in Z connecting z_0 to z. Then $\alpha : f \circ \gamma$ is a path in X from $f(z_0)$ to f(z). Let $\tilde{\alpha}$ be the unique lift of α starting with $\tilde{\alpha}(0) = y$. Define $\tilde{f}(z) = \tilde{\alpha}(1)$. This does not depend on the choice of γ : this follows as Z is simply connected, using the homotopy lifting lemma. Now $p \circ \tilde{f} = f$, so \tilde{f} is a lift of f.

We need to check the continuity of \tilde{f} . Let $z \in Z$, let $y = \tilde{f}(z)$, and let V, U be neighborhoods of y, p(y), respectively such that $p|_V : V \to U$ is a homeomorphism; $y \in V$ and $f(z) \in U$. f is continuous, so there exists a neighborhood W of z which is pathconnected such that $f(W) \subseteq U$. We claim that $\tilde{f}(W) \subseteq W$; this will show the continuity of \tilde{f} . Let $z' \in W$, and let γ' be a curve in W from z to z'. Let γ and $\alpha = f \circ \gamma$ be as before. Then $\alpha' = f \circ \gamma' \in U$, so $\tilde{\alpha}'$ sending $t \mapsto (p|_V)(\alpha'(t))$ is a lift of α' starting at y. The product curve

$$\tilde{\alpha} * \tilde{\alpha}'(t) = \begin{cases} \tilde{\alpha}(2t) & 0 \le t \le 1/2\\ \tilde{\alpha}'(2t-1) & 1/2 < t \le 1 \end{cases}$$

is a lift of $\alpha * \alpha' = f(\gamma * \gamma')$. The curve $\gamma * \gamma'$ starts at z_0 and ends at z'. By definition, $\tilde{f}(z') = \tilde{\alpha} * \tilde{\alpha}'(1) = \tilde{\alpha}'(1) \in V$, where V is a small neighborhood of $y = \tilde{f}(z)$.

1.2 Germs of holomorphic functions

Definition 1.1. Let X be a Riemann surface, and let $a \in X$. If f, g are holomorphic near a, we say that f and g are **equivalent** if there exists a neighborhood W of a such that $f|_W = g|_W$. The equivalence class of f, denoted by f_a is called the **germ** of f at a. We let O_a denote the **space of holomorphic germs** at a.

Remark 1.1. O_a is an algebra (in particular a ring) with no zero divisors.

Let $O_X = \coprod_{a \in X} O_a$. Equip O_X with the following topology. Let $\omega \subseteq X$ be open, and let $f \in \operatorname{Hol}(\omega)$. Set $N(f, \omega) = \{f_x \in O_x : x \in \omega\} \subseteq O_X$. The class of set $N(f, \omega)$ is a base for a topology on O_X , where the open sets are all unions of sets of the form $N(f, \omega)$. If $f' \in \operatorname{Hol}(\omega')$, $f'' \in \operatorname{Hol}(\omega'')$, then $N(f', \omega') \cap N(f'', \omega) = N(f', \omega) = N(f'', \omega)$, where $\omega = \{x \in \omega' \cap \omega'' : f'_x = f''_x\}$ is open.

Definition 1.2. The topological space O_X is called the **sheaf of germs** of holomorphic functions on X.

We have the natural map $p: O_X \to X$ sending $f_a \mapsto a$.

Proposition 1.1. *p* is a local homeomorphism.

Proof. Let $f_a \in O_X$, and let (f, ω) be a representative of f_a . Then $p : N(f, \omega) \to \omega$ is a homeomorphism.

Remark 1.2. This means that we can given O_X the structure of a Riemann surface. However, this is not a covering map.

Proposition 1.2. The topological space O_X is Hausdorff.

Proof. Let $f_a, g_b \in O_X$ with $f_a \neq g_b$. If $a \neq b$, there exist representatives $(f, \omega_a), (g, \omega_b)$ with $\omega_a \cap \omega_b = \emptyset$ such that $N(f, \omega_a) \cap N(g, \omega_b) = \emptyset$. If a = b and $f_a \neq g_a$, then there exists a connected neighborhood ω of a and representatives $f(f, \omega), (g, \omega)$ such that $N(f, \omega) \cap N(g, \omega) = \emptyset$ by analytic continuation.

1.3 Analytic continuation

Definition 1.3. Let $a \in X$, $f_a \in O_a$, and let γ be a curve in X starting at a. The **analytic** continuation of f_a along γ is a lift $\tilde{\gamma} : [0, 1] \to O_X$ of γ such that $\tilde{\gamma}(0) = f_a$.

$$Z \xrightarrow{\tilde{\gamma}} X \xrightarrow{\tilde{\gamma}} X \xrightarrow{\tilde{\gamma}} X$$

We write $\tilde{\gamma}(t) = f_{\gamma(t)} \in O_{\gamma(t)}$.

Remark 1.3. The analytic continuation, if it exists, is unique (uniqueness of lifts).

Example 1.1. It is not always possible to find an analytic continuation. Let $\gamma(t) = t$ for $0 \le t \le 1$, and let f(z) = 1/(1-z) near 0. Then f cannot be analytically continued along the curve γ .